Hydro-Compaction Definition (Hydrocompaction)
The term “Hydro-Compaction” or “Hydrocompaction” in engineering geology refers to the process whereby soils collapse upon saturation. Hydrocompaction can also be called “Hydro-Consolidation.”
The term “Hydro-Compaction” or “Hydrocompaction” in engineering geology refers to the process whereby soils collapse upon saturation. Hydrocompaction can also be called “Hydro-Consolidation.”

Subsidence “Subsidence” is a geologic condition, in which a localized mass movement occurs, resulting in the downward settlement of the earth over time. When subsidence occurs, the actual ground surface elevation is lower. This occurrence of the ground surface sinking is typically caused by groundwater table and aquifer reductions, by which the soils become more…

Methane Alarm System Methane Alarm System: As per the Los Angeles Department of Building and Safety (LADBS) Methane Code, Ordinance Number 175790, a methane alarm system is part of an active methane mitigation plan. A methane alarm system is a group of interacting components and circuits that synchronize to monitor and annunciate the status of…

Retaining Wall Retaining Wall: A structure that provides the support needed to hold (in place) a mass of earth, preventing it from moving downhill. Retaining walls are relatively rigid structures comprising footings and a drainage system, in order to retain the soils between two different elevations. Updated May 25, 2020. Construction & Design A lot…

Oblique-Slip Fault Oblique-Slip Fault: In geology, an oblique-slip fault is a fault that moves parallel to the strike or dip of the fault plane.

Thermosphere Thermosphere: The thermosphere of a terrestrial planet is the fourth and final member of the atmosphere. On Earth, the thermosphere starts atop the mesosphere at approximately 85 kilometers above mean sea level. The upper limit of the thermosphere is reasonably presumed to terminate approximately 95 kilometers above mean sea level. In fact, most of…

Critical Void Ratio The “Critical Void Ratio,” in soil science and geology, represents the final void ratio of a soil sample, at ultimate strength. And Critical Void Ratio is achieved by the loose and dense samples of the same soil post-shearing.