Mineral

Mineral Definition

A mineral is defined as an inorganic element, compound, or substance that naturally develops with an organized internal structure and/or crystal form over time. Minerals are also distinguishable by their chemical composition and physical properties, as determined in laboratories by geologists. Typical earth minerals found in most igneous, metamorphic, and sedimentary rocks are feldspar, muscovite, olivine, and quartz. In fact, feldspars are the most common mineral within the earth’s crust, and olivine is one of the most common minerals in the mantle.

Mineral Classification

As of the year 2021, there are about 3,800 types of mineral names in academia. And each mineral is identified based on its physical properties. For instance: harness; fracture streak; luster; crystal structure; color; specific gravity; and density.

Crystal Structure

A mineral’s crystal structure is a reflection of how the atoms are arranged internally. And there are seven primary crystal systems: cubic; tetragonal; hexagonal; trigonal; orthorhombic; monoclinic; and triclinic.

Harness

A mineral’s relative harness is a scientific determination by whether the specimen itself scratches another mineral on the Mohs Hardness Scale, or not.

Luster

Light reflection properties from the surface of a mineral sample are what define its luster. Most minerals qualify under any of the following classifications: vitreous; silky; waxy; glassy; metallic; pearly; dull; flat; and resinous.

Color

Coloring can differ in mineral specimens for many reasons. For instance, weathered mineral samples can show different shades of coloration as opposed to unweathered specimens. Nonetheless, when observing igneous rocks, geologists utilize a color index system in order to determine the mafic mineral content. Moreover, color determinations can occur without the use of the index system. For instance,  lab technicians can make a streak on a plate of porcelain to determine the “diagnostic color” of a specimen.

Specific Gravity and Density

A mineral’s specific gravity is defined by the ratio of its density and the density of water.

Minerals vs Other Rocks

The term “rock” is a global description of an aggregate substance comprising one mineral, or an assortment of other minerals together as one mass. To simplify, rocks are known to contain minerals and can be either igneous, metamorphic, or sedimentary. For example, sandstones (sedimentary rock), granites (igneous rock), and marbles (metamorphic rock) are all examples of rocks that comprise a variety of minerals.

 

Similar Posts

  • Control Panel for Methane Mitigation System

    Control Panel in a Methane Mitigation System Control Panel of a Methane Mitigation System: A methane mitigation control panel is the brain behind the active mitigation system. In accordance with the Los Angeles Department of Building and Safety (LADBS) Methane Code, Ordinance Number 175790, a control panel synchronizes methane alarm units with sensors and the…

  • Concrete Gravity Dam

    What is a Concrete Gravity Dam? A Concrete Gravity Dam is also known as “Gravity Arch Dam,” and is a freshwater-retaining concrete structure that has a wider footing (base) than the top-section. The purpose of a Concrete Gravity Dam is to maintain a low center of gravity, in order to avoid collapsing in the event…

  • Unconfined Aquifer

    Unconfined Aquifer Unconfined Aquifer: In the hydrogeology branch of geology, an unconfined aquifer is an aquifer that has a water table. In fact, an unconfined aquifer can only be the uppermost hydrogeologic unit and is particularly one that has no hydraulic head (or pressure) that is equal to atmospheric pressure. To illustrate, depth to groundwater…

  • Well Graded

    Well Graded Soil Well Graded: In the soil classification process of geology, well graded soil represents a sedimentary soil sample that fully displays all of the possible grain sizes for that soil classification, in accordance with the Unified Soil Classification System (USCS). For example, a well graded sand (SW) comprises fine, medium, and coarse grains…

  • Effective Stress (σ’)

    Effective Stress (σ’) “Effective Stress” (σ’) is a geotechnical engineering term. Effective Stress is a function of “total stress,” and is due to the solid particles of soil. Effective stress represents an excess of stress above pore-water pressure (or neutral stress). Effective Stress Formula Effective Stress = Total Stress – Pore-Water Pressure.