Seismic Moment
Seismic Moment: In the seismology branch of geology, seismic moment represents a measure of the size of an earthquake, depending on the area of rupture, the rigidity of the rock, and the amount of slip from faulting.
Seismic Moment: In the seismology branch of geology, seismic moment represents a measure of the size of an earthquake, depending on the area of rupture, the rigidity of the rock, and the amount of slip from faulting.

Geosyncline Geosyncline: In geology, a geosyncline is a large-scale indentation in the Earth’s crust that is filled with sediments. A geosyncline forms due to the gradual sinking of the Earth’s crust, causing sediment from adjacent areas to gather inside. An example of a geosyncline is the Appalachian Mountains.

Rigidity Definition Rigidity – In geotechnical engineering and engineering geology, rigidity represents the ratio of the shear stress and the amount of angular rotation that it produces, within a rock sample.

Waterproofing Barrier System Definition A waterproofing barrier system guarantees full protection to walls, foundations, and methane mitigation systems that are below grade and are susceptible to moisture penetration. Typically, the best way to protect a retaining wall against moisture is the application of a waterproofing barrier on the backside of it, after pouring concrete, but…

Aphanitic Definition Aphanitic: In geology, the term aphanitic describes the texture of plutonic or volcanic igneous rocks, with grains that are not visible to the naked eye. In fact, an aphanitic texture is usually the result of faster cooling and solidification of liquid magma.

Porosity (n) “Porosity” (n), in the geological engineering field, is a percentage value that represents the bulk volume of a rock or soil, that is occupied by the void space within. Porosity (n) Formula Porosity (n) = [(Volume of Voids ÷ Total Volume) x 100%]

Body-Wave Magnitude Body-Wave Magnitude: A method for determining earthquake size from the amplitude of body waves. The body-wave magnitude focuses on P-waves and S-waves, which travel faster through the Earth’s crust and mantle.